
A Simple Search Engine

Benjamin Roth

CIS LMU

Benjamin Roth (CIS LMU) A Simple Search Engine 1 / 13

Document Collection for Search Engine

Now that we have a documents, let’s represent a collection of
documents for search.

What does a such a class for representing a document collection
need?

I Information to store?
I Functionality?

Benjamin Roth (CIS LMU) A Simple Search Engine 2 / 13

Document Collection for Search Engine

What does a class need for representing a document collection for search?

Information to store:
I Store the documents, and access them via an id.
I An inverted index: A map from each term to all documents containing

that term. (For efficiently finding all potentially relevant documents)
I The document frequency for each terms (number of documents in

which it occurs), to be used in similarity computation.

Functionality:
I Read documents (from directory)
I Return (all) documents that contain (all) terms of a query.
I Reweight token frequencies by tf-idf weighting.
I Compute cosine-similarity for two documents.

Benjamin Roth (CIS LMU) A Simple Search Engine 3 / 13

Document Collection (Code Skeleton)

class DocumentCollection:

def __init__(self, term_to_df, term_to_docids, \

docid_to_doc):

#...

@classmethod

def from_dir(cls, root_dir, file_suffix):

#...

@classmethod

def from_document_list(cls, docs):

#...

def docs_with_all_tokens(self, tokens):

#...

def tfidf(self, counts):

#...

def cosine_similarity(self, docA, docB):

#...

Benjamin Roth (CIS LMU) A Simple Search Engine 4 / 13

Detail: Constructor

Set all the required data fields

def __init__(self, term_to_df, term_to_docids, docid_to_doc):

string to int

self.term_to_df = term_to_df

string to set of string

self.term_to_docids = term_to_docids

string to TextDocument

self.docid_to_doc = docid_to_doc

Benjamin Roth (CIS LMU) A Simple Search Engine 5 / 13

Detail: Get all documents containing all search terms

def docs_with_all_tokens(self, tokens):

docids_for_each_token = [self.term_to_docids[token] \

for token in tokens]

docids = set.intersection(*docids_for_each_token)

return [self.docid_to_doc[id] for id in docids]

What does docids for each token contain?

What is contained in docids?

How can we get all documents that contain any of the search terms?

Bonus: What could be (roughly) the time complexity of
set.intersection(...)?

Benjamin Roth (CIS LMU) A Simple Search Engine 6 / 13

Detail: Get all documents containing all search terms

What does docids for each token contain?
List of set of document ids. (For each search term one set)

What is contained in docids?
The intersection of the above sets. The ids of those documents that
contain all terms.

How can we get all documents that contain any of the search terms?
Use set union instead of intersection.
Bonus: What could be (roughly) the time complexity of
set.intersection(...)? A simple algorithm would be:

I For each document id in any of the sets check wether it is contained in
all of the other sets.

I If yes, add to result set.
I You can assume that checking set inclusion, and adding to a set takes

constant time.
I Complexity: O(nm), where n is number of search terms, m is number

of document ids in all sets.
I A more efficient algorithm would use sorted lists of document ids

(posting lists).

Benjamin Roth (CIS LMU) A Simple Search Engine 7 / 13

Detail: Tf.Idf Weighting

def tfidf(self, counts):

N = len(self.docid_to_doc)

return {tok: tf * math.log(N/self.term_to_df[tok]) for \

tok,tf in counts.items() if tok in self.term_to_df}

Input (dictionary): term ⇒ counts of term in document

Output (dictionary): term ⇒ weighted counts

Remember formulas:
I Term frequency is just the number of occurrences of the term (we use

the simple, unnormalized version).
I Inverse document frequency:

log
N

dft

where N is the size of the document collection and dft is the number of
documents term t occurrs in.

Benjamin Roth (CIS LMU) A Simple Search Engine 8 / 13

Detail: Cosine Similarity

def cosine_similarity(self, docA, docB):

weightedA = self.tfidf(docA.token_counts)

weightedB = self.tfidf(docB.token_counts)

dotAB = dot(weightedA, weightedB)

normA = math.sqrt(dot(weightedA, weightedA))

normB = math.sqrt(dot(weightedB, weightedB))

if normA == 0 or normB == 0:

return 0.

else:

return dotAB / (normA * normB)

Input (dictionaries): term frequencies of two documents.

Output: Cosine similarity of tf.idf weighted document vectors.

How would dot helper function look like?

What is the meaning of normA and normB?

When can normA or normB be zero?

Benjamin Roth (CIS LMU) A Simple Search Engine 9 / 13

Detail: Cosine Similarity

How would dot helper function look like?

def dot(dictA, dictB):

return sum([dictA.get(tok) * dictB.get(tok,0) for \

tok in dictA])

What is the meaning of normA and normB?
Vector norm (l2). It is defined as the square root of the dot product
of a vector with itself:

|v |2 =

√∑
i

v2i

Intuitively it measures the “length” of a document, and is high if a
document contains many terms.

When can normA or normB be zero? When a query only contains
out-of-vocabulary words (tfidf(...) filters those words out).

Benjamin Roth (CIS LMU) A Simple Search Engine 10 / 13

Putting it all together: Search Engine

Most of the functionality is already contained in the
DocumentCollection class.

The search engine only has to
I Preprocess (tokenize) the query.
I Call the respective methods (e.g. docs with all tokens,

cosine similarity)
I Sort the results to put most similar results first.
I Select some text snippets for displaying to the user.

Benjamin Roth (CIS LMU) A Simple Search Engine 11 / 13

Search Engine: Code Skeleton

class SearchEngine:

def __init__(self, doc_collection):

#...

def ranked_documents(self, query):

#...

def snippets(self, query, document, window=50):

#...

See full implementation in the lecture repository.

Benjamin Roth (CIS LMU) A Simple Search Engine 12 / 13

Summary

Representing
I Text documents
I Document collections

Factory method constructors

Retrieving documents

Computing similarity

... Questions?

Benjamin Roth (CIS LMU) A Simple Search Engine 13 / 13

